1,813 research outputs found

    Accelerating cryptic pocket discovery using AlphaFold

    Get PDF
    Cryptic pockets, or pockets absent in ligand-free, experimentally determined structures, hold great potential as drug targets. However, cryptic pocket openings are often beyond the reach of conventional biomolecular simulations because certain cryptic pocket openings involve slow motions. Here, we investigate whether AlphaFold can be used to accelerate cryptic pocket discovery either by generating structures with open pockets directly or generating structures with partially open pockets that can be used as starting points for simulations. We use AlphaFold to generate ensembles for 10 known cryptic pocket examples, including five that were deposited after AlphaFold\u27s training data were extracted from the PDB. We find that in 6 out of 10 cases AlphaFold samples the open state. For plasmepsin II, an aspartic protease from the causative agent of malaria, AlphaFold only captures a partial pocket opening. As a result, we ran simulations from an ensemble of AlphaFold-generated structures and show that this strategy samples cryptic pocket opening, even though an equivalent amount of simulations launched from a ligand-free experimental structure fails to do so. Markov state models (MSMs) constructed from the AlphaFold-seeded simulations quickly yield a free energy landscape of cryptic pocket opening that is in good agreement with the same landscape generated with well-tempered metadynamics. Taken together, our results demonstrate that AlphaFold has a useful role to play in cryptic pocket discovery but that many cryptic pockets may remain difficult to sample using AlphaFold alone

    Chaperone-assisted translocation of a polymer through a nanopore

    Full text link
    Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy ϵ\epsilon between the chaperone and the chain and the chaperone concentration NcN_c can greatly improve the translocation probability. Particularly, with increasing the chaperone concentration a maximum translocation probability is observed for weak binding. For a fixed chaperone concentration, the histogram of translocation time τ\tau has a transition from long-tailed distribution to Gaussian distribution with increasing ϵ\epsilon. τ\tau rapidly decreases and then almost saturates with increasing binding energy for short chain, however, it has a minimum for longer chains at lower chaperone concentration. We also show that τ\tau has a minimum as a function of the chaperone concentration. For different ϵ\epsilon, a nonuniversal dependence of τ\tau on the chain length NN is also observed. These results can be interpreted by characteristic entropic effects for flexible polymers induced by either crowding effect from high chaperone concentration or the intersegmental binding for the high binding energy.Comment: 10 pages, to appear in J. Am. Chem. So

    Anomalous Dynamics of Forced Translocation

    Full text link
    We consider the passage of long polymers of length N through a hole in a membrane. If the process is slow, it is in principle possible to focus on the dynamics of the number of monomers s on one side of the membrane, assuming that the two segments are in equilibrium. The dynamics of s(t) in such a limit would be diffusive, with a mean translocation time scaling as N^2 in the absence of a force, and proportional to N when a force is applied. We demonstrate that the assumption of equilibrium must break down for sufficiently long polymers (more easily when forced), and provide lower bounds for the translocation time by comparison to unimpeded motion of the polymer. These lower bounds exceed the time scales calculated on the basis of equilibrium, and point to anomalous (sub-diffusive) character of translocation dynamics. This is explicitly verified by numerical simulations of the unforced translocation of a self-avoiding polymer. Forced translocation times are shown to strongly depend on the method by which the force is applied. In particular, pulling the polymer by the end leads to much longer times than when a chemical potential difference is applied across the membrane. The bounds in these cases grow as N^2 and N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of the radius of gyration to N. Our simulations demonstrate that the actual translocation times scale in the same manner as the bounds, although influenced by strong finite size effects which persist even for the longest polymers that we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure

    Conformational distributions of isolated myosin motor domains encode their mechanochemical properties

    Get PDF
    Myosin motor domains perform an extraordinary diversity of biological functions despite sharing a common mechanochemical cycle. Motors are adapted to their function, in part, by tuning the thermodynamics and kinetics of steps in this cycle. However, it remains unclear how sequence encodes these differences, since biochemically distinct motors often have nearly indistinguishable crystal structures. We hypothesized that sequences produce distinct biochemical phenotypes by modulating the relative probabilities of an ensemble of conformations primed for different functional roles. To test this hypothesis, we modeled the distribution of conformations for 12 myosin motor domains by building Markov state models (MSMs) from an unprecedented two milliseconds of all-atom, explicit-solvent molecular dynamics simulations. Comparing motors reveals shifts in the balance between nucleotide-favorable and nucleotide-unfavorable P-loop conformations that predict experimentally measured duty ratios and ADP release rates better than sequence or individual structures. This result demonstrates the power of an ensemble perspective for interrogating sequence-function relationships

    Effect of lactoperoxidase on the antimicrobial effectiveness of the thiocyanate hydrogen peroxide combination in a quantitative suspension test

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The positive antimicrobial effects of increasing concentrations of thiocyanate (SCN-) and H<sub>2</sub>O<sub>2 </sub>on the human peroxidase defence system are well known. However, little is known about the quantitative efficacy of the human peroxidase thiocyanate H<sub>2</sub>O<sub>2 </sub>system regarding Streptococcus mutans and sanguinis, as well as Candida albicans. The aim of this study was to evaluate the effect of the enzyme lactoperoxidase on the bactericidal and fungicidal effectiveness of a thiocyanate-H<sub>2</sub>O<sub>2 </sub>combination above the physiological saliva level. To evaluate the optimal effectiveness curve, the exposure times were restricted to 1, 3, 5, and 15 min.</p> <p>Results</p> <p>The bactericidal and fungicidal effects of lactoperoxidase on Streptococcus mutans and sanguinis and Candida albicans were evaluated by using two test mixtures of a 2.0% (w/v; 0.34 M) thiocyanate and 0.4% (w/v; 0.12 M) hydrogen peroxide solution, one without and one with lactoperoxidase. Following the quantitative suspension tests (EN 1040 and EN 1275), the growth of surviving bacteria and fungi in a nutrient broth was measured. The reduction factor in the suspension test without lactoperoxidase enzyme was < 1 for all three tested organisms. Thus, the mixtures of 2.0% (w/v; 0.34 M) thiocyanate and 0.4% (w/v; 0.12 M) hydrogen peroxide had no in vitro antimicrobial effect on Streptococcus mutans and sanguinis or Candida albicans. However, the suspension test with lactoperoxidase showed a high bactericidal and fungicidal effectiveness in vitro.</p> <p>Conclusion</p> <p>The tested thiocyanate and H<sub>2</sub>O<sub>2 </sub>mixtures showed no relevant antimicrobial effect. However, by adding lactoperoxidase enzyme, the mixtures became not only an effective bactericidal (Streptococcus mutans and sanguinis) but also a fungicidal (Candida albicans) agent.</p

    Dragging a polymer chain into a nanotube and subsequent release

    Full text link
    We present a scaling theory and Monte Carlo (MC) simulation results for a flexible polymer chain slowly dragged by one end into a nanotube. We also describe the situation when the completely confined chain is released and gradually leaves the tube. MC simulations were performed for a self-avoiding lattice model with a biased chain growth algorithm, the pruned-enriched Rosenbluth method. The nanotube is a long channel opened at one end and its diameter DD is much smaller than the size of the polymer coil in solution. We analyze the following characteristics as functions of the chain end position xx inside the tube: the free energy of confinement, the average end-to-end distance, the average number of imprisoned monomers, and the average stretching of the confined part of the chain for various values of DD and for the number of monomers in the chain, NN. We show that when the chain end is dragged by a certain critical distance x∗x^* into the tube, the polymer undergoes a first-order phase transition whereby the remaining free tail is abruptly sucked into the tube. This is accompanied by jumps in the average size, the number of imprisoned segments, and in the average stretching parameter. The critical distance scales as x∗∼ND1−1/νx^*\sim ND^{1-1/\nu}. The transition takes place when approximately 3/4 of the chain units are dragged into the tube. The theory presented is based on constructing the Landau free energy as a function of an order parameter that provides a complete description of equilibrium and metastable states. We argue that if the trapped chain is released with all monomers allowed to fluctuate, the reverse process in which the chain leaves the confinement occurs smoothly without any jumps. Finally, we apply the theory to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure

    Rational Design of Small Molecule Inhibitors Targeting the Ras GEF, SOS1

    Get PDF
    SummaryRas GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, was found to bind to SOS1, competitively suppress SOS1-Ras interaction, and dose-dependently inhibit SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity

    Translocation of structured polynucleotides through nanopores

    Full text link
    We investigate theoretically the translocation of structured RNA/DNA molecules through narrow pores which allow single but not double strands to pass. The unzipping of basepaired regions within the molecules presents significant kinetic barriers for the translocation process. We show that this circumstance may be exploited to determine the full basepairing pattern of polynucleotides, including RNA pseudoknots. The crucial requirement is that the translocation dynamics (i.e., the length of the translocated molecular segment) needs to be recorded as a function of time with a spatial resolution of a few nucleotides. This could be achieved, for instance, by applying a mechanical driving force for translocation and recording force-extension curves (FEC's) with a device such as an atomic force microscope or optical tweezers. Our analysis suggests that with this added spatial resolution, nanopores could be transformed into a powerful experimental tool to study the folding of nucleic acids.Comment: 9 pages, 5 figure
    • …
    corecore